
J Glob Optim (2009) 43:83–95
DOI 10.1007/s10898-008-9294-x

Constrained inverse min–max spanning tree problems
under the weighted Hamming distance

Longcheng Liu · Qin Wang

Received: 28 July 2007 / Accepted: 7 March 2008 / Published online: 21 March 2008
© Springer Science+Business Media, LLC. 2008

Abstract In this paper, we consider the constrained inverse min–max spanning tree
problems under the weighted Hamming distance. Three models are studied: the problem
under the bottleneck-type weighted Hamming distance and two mixed types of problems.
We present their respective combinatorial algorithms that all run in strongly polynomial times.

Keywords Min–max spanning tree · Inverse problems · Hamming distance · Strongly
polynomial algorithms

1 Introduction

Let G= (V, E, c) be a connected graph, where V = {1, 2, . . . , n} is the node set, E ={e1, e2,

. . . , em} is the edge set and c is the edge cost vector defined on E . Let � denote the collection
of all spanning trees of G. For a spanning tree T ∈ �, write cb(T) = max{c(e)|e ∈ T } and
call it the cost of T . The min–max spanning tree is to find a T ∗ ∈ � such that cb(T ∗) =
min{cb(T)|T ∈ �}. It is known that min–max spanning tree problem can be solved in strongly
polynomial time [1].

Conversely, an inverse min–max spanning tree problem is to modify the edge cost vector
as little as possible such that a given spanning tree becames a min–max spanning tree. Yang
et al. [2] showed that the inverse min–max spanning tree problem and the inverse maxi-
mum capacity path problem under l1 and l∞ norms are strongly polynomial time solvable,
where the modification cost is measured by l1 and l∞ norms. Liu et al. [3] showed that the
inverse min–max spanning tree problem under the weighted sum–type Hamming distance is

This research is supported by the National Natural Science Foundation of China (Grant No. 10601051).

L. Liu (B)
Department of Mathematics, Zhejiang University, Hangzhou, China
e-mail: llcly@126.com

Q. Wang
Department of Mathematics, China Jiliang University, Hangzhou, China
e-mail: wq@cjlu.edu.cn

123

84 J Glob Optim (2009) 43:83–95

strongly polynomial time solvable. In this paper, we consider the constrained inverse min–
max spanning tree problems under the weighted Hamming distance, in which we measure
the modification cost by the weighted Hamming distance. Three variations will be discussed.

Let each edge ei have an associated weight wi ≥ 0, and let w denote the edge weight
vector. Let T 0 be a given spanning tree of graph G. Then for the inverse min–max spanning
tree problem under the weighted bottleneck-type Hamming distance, we look for a new cost
vector d = (d1, d2, . . . , dm) such that

(a) T 0 is a min–max spanning tree with respect to d;
(b) for each ei ∈ E , −li ≤ di − ci ≤ ui , where li , ui ≥ 0 are given lower and upper

modification bounds;
(c) the maximum modification cost among all edges, i.e., max

ei∈E
{wi H(ci , di)}, is minimized,

where H(ci , di) is the Hamming distance between ci and di , i.e., H(ci , di)= 0 if ci = di

and 1 otherwise.

We also consider two mixed type cases. For the first mixed type problem, we look for a
new cost vector d = (d1, d2, . . . , dm) such that in addition to the requests (a), (b) and (c), it
also satisfies

(d) the total modification cost for all edges cannot exceed a given upper bound M > 0, i.e.,∑m
i=1 wi H(ci , di) ≤ M .

For the second mixed type problem, we look for a new cost vector d = (d1, d2, . . . , dm) such
that in addition to the requests (a) and (b), it also satisfies

(c′) the total modification cost for all edges, i.e.,
∑m

i=1
wi H(ci , di), is minimized;

(d′) the maximum modification cost among all the edges cannot exceed a given upper bound
M > 0, i.e., max

ei∈E
{wi H(ci , di)} ≤ M .

In general, for an inverse combinatorial optimization problem, a feasible solution is given
which is not optimal under the current parameter values, and it is required to modify some
parameters with minimum modification cost such that the given feasible solution becomes an
optimal solution. A lot of such problems have been well studied when the modification cost
is measured by (weighted) l1, l2, and l∞ norms. Readers may refer to the survey paper [4] and
papers cited therein. Recently, inverse problems under the weighted Hamming distance also
received attention. In fact the weighted sum-type Hamming distance represents the weighted
number of modifications. It corresponds to the situation in which we might care about only
whether the parameter of an arc is changed, but without considering the magnitude of its
change as long as the adjustment is restricted to a certain interval. Noting that not like the l1,
l2 and l∞ norms which are all convex and continuous about the modification, the Hamming
distance H(·, ·) is discontinuous and nonconvex, which makes the known methods for l1, l2
and l∞ norms unable to be applied directly to the problems under such distance measure.

He et al. [5] discussed the inverse minimum spanning tree problem under the weighted
sum-type Hamming distance. For both unbounded and bounded cases, they presented strongly
polynomial algorithms with a time complexity O(n3m). Here n and m are the numbers of
nodes and edges, respectively, in a given undirected network. He et al. [6] further discussed the
inverse minimum spanning tree problem under the weighted bottleneck-type Hamming dis-
tance. For the unbounded case, they presented algorithms with a time complexity O(nm), and
for the constrained case, they presented an algorithm with a time complexity O(n3m log m).
Duin and Volgenant [7] also discussed the unbounded case of the inverse minimum spanning

123

J Glob Optim (2009) 43:83–95 85

tree problem under the bottleneck-type Hamming distance. They presented an improved
algorithm with a time complexity O(n2). They further extended the results to the inverse
shortest path tree problem and the linear assignment problem. Zhang et al. [8] considered
the center location improvement problem under the weighted Hamming distance. For the
bounded case, they showed that even under the unweighted sum-type Hamming distance,
achieving an algorithm with a worst-case ratio O(log n) is strongly N P-hard, but under the
weighted bottleneck-type Hamming distance, a strongly polynomial algorithm with a time
complexity O(n2 log n) is available. Yang et al. [9] discussed inverse sorting problems under
the weighted sum-type Hamming distance. For both unbounded and bounded cases, they
presented strongly polynomial algorithms. Liu et al. [10] discussed inverse maximum flow
problems under the weighted Hamming distance, for both sum-type and bottleneck-type,
they presented strongly polynomial algorithms. Liu et al. [11] discussed inverse minimum
cut problems under the weighted bottleneck-type Hamming distance, they presented strongly
polynomial algorithm. Guan et al. [12] discussed inverse bottleneck optimization problems
under weighted Hamming distance, for the discussed problems they presented strongly poly-
nomial algorithms.

The paper is organized as follows. Section 2 contains some preliminary results. Sections 3
and 4 consider the problem under the weighted bottleneck-type Hamming distance and the
two mixed type problems, respectively. We show that all these problems can be solved by
strongly polynomial algorithms. Some final remarks are made in Sect. 5.

In the following, for each edge set � we define ws(�) =∑
ei∈� wi , wb(�) = maxei∈� wi

and use similar notations cs(�) and cb(�) for vector c (here s and b stand for ‘sum’ and
‘bottleneck’, respectively).

2 Preliminary results

For the original min–max spanning tree problem, the following result is straightforward.

Lemma 2.1 A spanning tree T of G is a min–max spanning tree under a cost vector c if and
only if G becomes disconnected after deleting the edges whose costs are not less than cb(T).

Now we consider the constrained inverse min–max spanning tree problem under the
Hamming distance. The general inverse min–max spanning tree problem under the weighted
bottleneck-type Hamming distance can be formulated as follows.

min max
ei∈E
{wi H(ci , di)}

s.t. T 0 is a min–max spanning tree of G(V, E, d);
−li ≤ di − ci ≤ ui , 1 ≤ i ≤ m.

(1)

Let T ∗ be a min–max spanning tree under the cost vector c, and assume cb(T 0) > cb(T ∗)
for otherwise we need to do nothing.

Remark Note that the lemmas in this section also hold for other types of inverse problems
discussed in later sections of the paper, and the proofs are similar.

Lemma 2.2 There exists an optimal solution d∗ of problem (1) such that cb(T 0) ≥ d∗b(T 0).

Proof In fact, if cb(T 0)< d∗b(T 0), then we can construct a new cost vector d by the following
way:

di =
{

cb(T 0), if ei ∈ T 0 and d∗i > cb(T 0),

d∗i , otherwise.

123

86 J Glob Optim (2009) 43:83–95

It is clear that d
b
(T 0) = cb(T 0) < d∗b(T 0). By Lemma 2.1, the graph G = (V, E, d∗)

becomes disconnected after deleting the edges whose cost satisfy d∗i ≥ d∗b(T 0). Hence
the graph G = (V, E, d) becomes disconnected after deleting the edges whose cost satisfy

di ≥ d
b
(T 0), which means T 0 is a min–max spanning tree of graph G = (V, E, d), i.e., d

is a feasible solution of problem (1).
However, by the definition of d and the definition of Hamming distance we have

max
ei∈E
{wi H(ci , d∗i)} ≥ max

ei∈E
{wi H(ci , di)}.

If max
ei∈E
{wi H(ci , d∗i)} > max

ei∈E
{wi H(ci , di)}, then d∗ cannot be an optimal solution of

problem (1), a contradiction. Hence, d is another optimal solution of problem (1), but it

satisfies d
b
(T 0) = cb(T 0). The lemma holds. ��

Based on Lemma 2.2, the following result is straightforward:

Lemma 2.3 There exists an optimal solution d∗ of problem (1) satisfies:

(a) d∗i = ci if ci ≥ d∗b(T 0) and ei ∈ E\T 0;
(b) d∗i ≥ ci if ci < d∗b(T 0) and ei ∈ E\T 0;
(c) d∗i = d∗b(T 0) if ci 	= d∗i and ei ∈ T 0.

Moreover, we have the following lemma:

Lemma 2.4 There exists an optimal solution d∗ of problem (1) satisfies:

(a) d∗i ≤ d∗b(T 0) if d∗i < ci ;
(b) d∗i ≥ d∗b(T 0) if d∗i > ci .

Proof Suppose d∗ is an optimal solution satisfies Lemma 2.3.
If d∗i < ci , then by the Lemma 2.3, we have ei ∈ T 0, hence d∗i ≤ d∗b(T 0), i.e., (a) holds.
Now let us consider (b). First, if ei ∈ T 0, then by Lemma 2.3, we have d∗i = d∗b(T 0).

Second, let us consider ei ∈ E\T 0. If (b) is not true, i.e., there exists an edge ek ∈ E\T 0

and ck < d∗k such that d∗k < d∗b(T 0).
Define d as

di =
{

ci , if i = k,

d∗i , otherwise.

Note that the difference between d∗ and d is only on the edge ek , so d∗b(T 0) = d
b
(T 0). By

Lemma 2.1, the graph G = (V, E, d∗) becomes disconnected after deleting the edges whose

cost satisfy d∗i ≥ d∗b(T 0), combining with the fact that dk = ck < d∗k < d∗b(T 0) = d
b
(T 0),

we know the graph G = (V, E, d) becomes disconnected after deleting the edges whose

cost satisfy di ≥ d
b
(T 0), which means that d is a feasible solution of problem (1). However,

by the definition of d we have

max
ei∈E
{wi H(ci , d∗i)} ≥ max

ei∈E
{wi H(ci , di)}.

If max
ei∈E
{wi H(ci , d∗i)} > max

ei∈E
{wi H(ci , di)}, then d∗ cannot be an optimal solution of problem

(1), a contradiction. Hence, d is another optimal solution of problem (1), but it satisfies
dk = ck . And by repeating the above procedure, we can conclude that there exists an optimal
solution d∗ of problem (1) such that d∗i ≥ d∗b(T 0) if d∗i > ci and ei ∈ E\T 0. From the
above analysis, we know (b) holds. ��

123

J Glob Optim (2009) 43:83–95 87

Here we first give a range for the value d∗b(T 0). First, by Lemma 2.2, we have cb(T 0) ≥
d∗b(T 0). On the other hand, since there are lower bounds on the reduction of costs, the smallest
possible value of d∗b(T 0) is d = max{ci − li |ei ∈ T 0}. So we have d ≤ d∗b(T 0) ≤ cb(T 0).
Second, we say that the value d∗b(T 0) must be one of the value in {ci |ei ∈ T 0} ∪ {d}. If not,
i.e., d∗b(T 0) > d and there exists two edges eg and eh such that cg < d∗b(T 0) < ch . In this
case, define d as

di =
{

cg, if d∗i = d∗b(T 0),

d∗i , otherwise.

It is clear that d is also an optimal solution and the optimal value is the same by the
definition of Hamming distance. Combining the above analysis we know the value d∗b(T 0)

must be one of the value in P = {{ci |ei ∈ T 0} ∪ {d}} ∩ [d, cb(T 0)]. Then we express the
different values in P as: p1 > p2 > · · · > pη.

3 Problem under the weighted bottleneck-type Hamming distance

The problem considered in this section is the inverse min–max spanning tree problem under
the weighted bottleneck-type Hamming distance which can be formulated as problem (1).

Before we consider how to solve the problem (1) directly, let us consider a restricted
version of the inverse min–max spanning tree problem under the bottleneck-type Hamming
distance. That is, for a given value p ∈ P , we first consider how to make T 0 a min–max
spanning tree under a cost vector d p such that d pb(T 0)= p, and d p satisfies the bound
restrictions and makes the objective value minimum. We may call this restricted version
of the inverse min–max spanning tree problem the inverse min–max spanning tree problem
under the bottleneck-type Hamming distance with value p.

First, let T 0(p) = {ei ∈ T 0|ci > p}, T 0(p) = {ei ∈ T 0|ci = p}. Clearly, for each edge
ei ∈ T 0(p), we need to reduce their costs to let the maximum cost on T 0 be equal to p. Due
to Lemma 2.3 for each edge ei ∈ T 0(p) we have d p

i = p and the associate objective value

is wb(T 0(p)) = max
ei∈T 0(p)

wi . And by Lemma 2.3, for each edge ei ∈ T 0(p) we do not need

to change its cost.
Second, by Lemma 2.3, for each edge ei ∈ E\T 0 such that ci ≥ p, we do not need to

change its cost.
Third, let E(p) = {ei ∈ E |ci < p}. Consider the graph G(p) = (V, E(p)). If G(p) is not

connected, we know that T 0 is already a min–max spanning tree with respect to the modified
weight d p and d pb(T 0) = p, where d p

i = p for ei ∈ T 0(p) and d p
i = ci for ei ∈ E\T 0(p).

And the objective value of problem (1) with respect to p is wb(T 0(p)) = max
ei∈T 0(p)

wi .

Thus we only need to consider the case that G(p) is a connected graph. In this case,
by Lemma 2.1, we need to increase the costs of some edges in graph G(p) such that G(p)

becomes disconnected after deleting those edges. Now we introduce the following restricted
minimum bottleneck-type weight edge cut problem:

Restricted minimum bottleneck-type weight edge cut problem(RMBWECP):
Find an edge set � ⊆ E(p) such that

(1) for each edge ei ∈ �, ci + ui ≥ p;
(2) G(p) becomes disconnected after deleting all edges in �;
(3) max

ei∈�
wi is minimized.

123

88 J Glob Optim (2009) 43:83–95

Theorem 3.1 If the RMBWECP is feasible, then an optimal solution of the restricted version
of problem (1) is

d∗i =
{

p, if ei ∈ T 0(p) ∪�∗,
ci , otherwise,

(2)

and the associate objective value is wb(T 0(p) ∪ �∗), where �∗ is an optimal solution of
RMBWECP. Otherwise, the restricted version of problem (1) is infeasible.

Proof In the case that RMBWECP is feasible, we first prove that d∗ defined by (2) is a
feasible solution of the restricted version of problem (1). From the definition of E(p) and
the first and second constraints of RMBWECP, we know the graph G becomes disconnected
after deleting the edges whose costs are not less than p, which indicates T 0 is a min–max
spanning tree of graph G(V, E, d∗), and it is clear −li ≤ d∗i − ci ≤ ui . Thus d∗ defined by
(2) is a feasible solution of the restricted version of problem (1) and the associate objective
value is wb(T 0(p) ∪�∗).

Next we prove wb(T 0(p) ∪ �∗) is the minimum objective value, thus d∗ is an optimal
solution of the restricted version of problem (1). If not, there exists an optimal solution d of
problem (1) such that

(a) d
b
(T 0) = p;

(b) max
ei∈E
{wi H(ci , di)} < wb(T 0(p) ∪�∗).

Let

� = {ei ∈ E |di 	= ci }. (3)

Then by the definition of Hamming distance, (b) is equivalent to

max
ei∈E
{wi H(ci , di)} = max

ei∈�
wi < wb(T 0(p) ∪�∗) = max

ei∈(T 0(p)∪�∗)
wi . (4)

Based on the above analysis, we can see that T 0(p) ⊆ � , thus (4) is equivalent to

max
ei∈�\T 0(p)

wi < max
ei∈�∗

wi . (5)

Moreover, we say �\T 0(p) is a feasible solution of RMBWECP. In fact, it is clear
�\T 0(p) ⊆ E(p). Based on the analysis before, we know di > ci for all ei ∈ �\T 0(p). And

by Lemma 2.4 we know di ≥ d
b
(T 0) = p for all ei ∈ �\T 0(p), which indicate ci +ui ≥ p

for all ei ∈ �\T 0(p). At last we claim G(p) becomes disconnected after deleting all edges in
�\T 0(p). Define Ẽ(p) := E(p)\{�\T 0(p)} and E(p) := {E(p) ∪ T 0(p)}\�. If not, i.e.,
G(V, Ẽ(p)) is connected. Since T 0(p)∩ E(p) = ∅, we know Ẽ(p) = E(p)\� ⊆ E(p), so
G(V, E(p)) is connected. And thus G(V, {E(p) ∪ T 0(p) ∪ {ei ∈ E | ci ≥ p}}\{� ∪ {ei ∈
E | ci ≥ p}}) = G(V, E\{�∪{ei ∈ E | ci ≥ p}}) is connected. Let L = {ei ∈ E | di ≥ p}.
By the above analysis we know L ⊆ {� ∪ {ei ∈ E | ci ≥ p}} and thus G(V, E\L) is
connected. But since T 0 is a min–max spanning tree of G(V, E, d), G(V, E\L) is discon-
nected by Lemma 2.1, a contradiction. So G(p) becomes disconnected after deleting all edges
in �\T 0(p). Hence �\T 0(p) is a feasible solution of RMBWECP. For �∗ is an optimal
solution of RMBWECP, we know

max
ei∈�\T 0(p)

wi ≥ max
ei∈�∗

wi , (6)

which contradicts with (5). So wb(T 0(p) ∪�∗) is exactly the minimum objective value.

123

J Glob Optim (2009) 43:83–95 89

At the same time, the above analysis told us if d is a feasible solution of the restricted
version of problem (1), then �\T 0(p) is a feasible solution of RMBWECP, where � is
defined in (3). Thus if the RMBWECP is infeasible, then the restricted version of problem
(1) is infeasible too. ��

Therefore, finding an optimal solution of the restricted version of problem (1) is equivalent
to finding an optimal solution of RMBWECP. To solve RMBWECP in strongly polynomial
time, we modify the graph G(p) = (V, E(p)) in the following way: the node set and the
edge set are unchanged; and the value of each edge is set as

vi =
{

wi , if ei ∈ E(p) and ci + ui ≥ p,

W + 1, otherwise,
(7)

where W = ∑

ei∈E(p)

wi

Definition 3.1 The minimum bottleneck value cut problem in graph is to find a set of edges
whose deletion make the graph disconnected and the bottleneck values of edges in the set is
minimized.

Theorem 3.2 Let �∗ be a minimum bottleneck value cut of G(V, E(p), v) with a value
vb(�∗).

(1) If vb(�∗) ≤ W , then �∗ must be an optimal solution of RMBWECP.
(2) If vb(�∗) > W , then RMBWECP has no feasible solution.

Proof

(1) First, if vb(�∗) ≤ W , then vi = wi for all ei ∈ �∗, i.e., for each ei ∈ �∗, ei ∈ E(p)

and ci + ui ≥ p. And it is clear G(p) becomes disconnected after deleting all edges in
�∗. So, �∗ is a feasible solution of RMBWECP.
Moreover, it is easy to see that �∗ is an optimal solution of RMBWECP. If not, suppose
there exists an edge set �′ which is feasible to RMBWECP, and wb(�′) < wb(�∗).
Then from (7), we have

vb(�′) = max
ei∈�′

wi = wb(�′) < wb(�∗) = max
ei∈�∗

wi = vb(�∗),

which contradicts the fact that �∗ is a minimum bottleneck value cut of G(V, E(p), v).
(2) Suppose that vb(�∗) > W but RMBWECP has a feasible solution �′. From (7), we

know that vi = wi for all ei ∈ �′. It implies that the value of �′ satisfies vb(�′) < W
(as W = ∑

ei∈E(p) wi), which contradicts the fact that �∗ is a minimum bottleneck

value cut of G(V, E(p), v) with a value vb(�∗) > W . ��
Based on the above analysis, we only need to find a minimum bottleneck value cut of

G(V, E(p), v). As we do not see any reference giving explicitly an algorithm for the pur-
pose, here we present how to solve this problem in detail.

First, for a specific pair of nodes s and t , we define an [s, t] cut as a set of edges whose
deletion from the graph disconnect the graph into two components that s and t are in differ-
ent components respectively. Here we present an algorithm to determine the [s, t] cut with
minimum bottleneck value in detail:

123

90 J Glob Optim (2009) 43:83–95

Algorithm 1

Step 1 Find a maximum (sum) spanning tree T ∗ of G(V, E(p), v).
Step 2 Form a subset of T ∗:

Q = {e ∈ T ∗|in T ∗\e, s and t are disconnected}.
Step 3 Find e∗ ∈ Q such that

v(e∗) = min{v(e) | e ∈ Q}.
Step 4 Identify the partition of V obtained by T ∗\e∗ as Z and Z = V \Z , where s ∈ Z and

t ∈ Z . Then form the bottleneck value [s, t] cut �∗ = {Z , Z}.
We now justify the algorithm.

Theorem 3.3 The edge set �∗ resulted from Algorithm 1 is the [s, t] cut with minimum
bottleneck value.

Proof Obviously �∗ is an [s, t] cut, and the only common edge of T ∗ and �∗ is e∗. Also,
by the property of maximum spanning tree, we know that

vb(�∗) = max
e∈�∗ v(e) = v(e∗).

Let � be an arbitrary [s, t] cut. If vb(�) < vb(�∗) = v(e∗), then we know � ∩ Q = ∅.
It is clear that the edges in Q form the unique s − t path in T ∗. So when we delete all the
edges in �, s and t are still connected, a contradiction. Hence we obtain

vb(�) ≥ v(e∗) = vb(�∗),

i.e., �∗ is the [s, t] cut with minimum bottleneck value. ��

It is clear that the main computation of Algorithm 1 is to find a max-sum spanning tree. So
Algorithm 1 runs in O(k + n log n) time (see [13]), where k and n are the numbers of edges
and nodes of G(V, E(p), v). The definition of a cut implies that if an edge set is an [s, t] cut,
it is also a [t, s] cut. This observation implies that we can find a minimum bottleneck value
cut of G(V, E(p), v) by invoking n(n−1)/2 applications of Algorithm 1, which means that
finding a minimum bottleneck value cut of G(V, E(p), v) can be done in polynomial time.

Now we are ready to give a full description of an algorithm to solve the restricted version
of problem (1).

Algorithm 2

Step 1 For the graph G = (V, E, c), the given spanning tree T 0 and the given value p,
determine the graph G(p) = (V, E(p)). If G(p) is not connected, stop and output
an optimal solution d∗ of the restricted version of problem (1) as

d∗i =
{

p, if ei ∈ T 0(p),

ci , otherwise,

and the associated optimal value is wb(T 0(p)). Otherwise go to Step 2.
Step 2 Construct graph G(V, E(p), v) according to formula (7). Find a minimum bottleneck

value cut �∗ of the graph G(V, E(p), v). If the value of the minimum cut satisfies
vb(�∗) > W , then the restricted version of problem (1) has no feasible solution, stop.
Otherwise, go to Step 3.

123

J Glob Optim (2009) 43:83–95 91

Step 3 Output an optimal solution d∗ of the restricted version of problem (1) as

d∗i =
{

p, if ei ∈ T 0(p) ∪�∗,
ci , otherwise,

(8)

and the associated objective value is wb(T 0(p) ∪�∗).
It is clear that Step 1 to check whether G(p) is connected or not takes O(n) time. From

the above analysis, Step 2 can be done in polynomial time. Hence, Algorithm 2 is a strongly
polynomial algorithm.

Now we consider the problem (1). In Sect. 2, we range the possible value of d∗b(T 0) as
P = {p1, p2, . . . , pη}. And above we discussed for a given value p ∈ P , we can get an
associated bottleneck modification weight in polynomial time. So we can give an algorithm
to solve problem (1) in strongly polynomial time as follows:

Algorithm 3
Step 0 Let i = 1 and I = ∅.
Step 1 For value pi , run Algorithm 2 to solve the restricted version of problem (1). If the

restricted version problem is infeasible, then go to Step 2; otherwise, we denote the
objective value get from Algorithm 2 as Vi and I = I ∪ {i}, then go to Step 2.

Step 2 i = i + 1, if i ≤ η, go back to Step 1; otherwise go to Step 3.
Step 3 Output an optimal objective value min

i∈I
Vi .

If we call solving the restricted version problem as an iteration, then Algorithm 3 needs
to run η iteration. From Sect. 2, we know η ≤ n, combining with the analysis of Algorithm
2, Algorithm 3 is a strongly polynomial algorithm.

4 Two mixed type problems

In this section, we study two sum-type and bottleneck-type mixed problems, which can be
formulated as follows:

min max
ei∈E
{wi H(ci , di)}

s.t. T 0 is a min–max spanning tree of G(V, E, d);
−li ≤ di − ci ≤ ui , 1 ≤ i ≤ m.

m∑

i=1

wi H(ci , di) ≤ M.

(9)

min
m∑

i=1

wi H(ci , di)

s.t. T 0 is a min–max spanning tree of G(V, E, d);
−li ≤ di − ci ≤ ui , 1 ≤ i ≤ m.

max
ei∈E
{wi H(ci , di)} ≤ M.

(10)

To consider the problem (9), we introduce the following problem:

min
m∑

i=1

wi H(ci , di)

s.t. T 0 is a min–max spanning tree of G(V, E, d);
−li ≤ di − ci ≤ ui , 1 ≤ i ≤ m.

(11)

123

92 J Glob Optim (2009) 43:83–95

The following lemma is trivial.

Lemma 4.1 Problem (9) has a feasible solution if and only if that problem (11) has a feasible
solution and the optimal value of problem (11) is not greater than M.

So we consider problem (11) first. This problem is a sum-type inverse optimization prob-
lem and there is already following available result, for the detail, the reader may refer to
paper [3]:

Algorithm 4 [3]

Step 1 For the graph G = (V, E, c), the given spanning tree T 0 and the given value p (here
the p is the same as discussed bedore), determine the graph G(p) = (V, E(p)). If
G(p) is not connected, stop and output an optimal solution d∗ of the restricted version
of problem (11) as

d∗i =
{

p, if ei ∈ T 0(p),

ci , otherwise,

and the associated optimal value ws(T 0(p)). Otherwise go to Step 2.
Step 2 Construct graph G(V, E(p), v) according to formula (7). Find a minimum value cut

�∗ of the graph G(V, E(p), v). If the value of the minimum cut satisfies vs(�∗) > W ,
then the restricted version of problem (11) has no feasible solution, stop. Otherwise,
go to Step 3.

Step 3 Output an optimal solution d∗ of the restricted version of problem (11) as

d∗i =
{

p, if ei ∈ T 0(p) ∪�∗,
ci , otherwise,

(12)

and the associated objective value is ws(T 0(p) ∪�∗).

We are going to give an algorithm for solving problem (9). We first explain the main idea
of the algorithm.

First, by comparing problems (1) and (9), we see that they have the same objective function
and the first two groups of constraints, but problem (9) has one more constraint. Hence, if
we denote by d1 and d∗ the optimal solutions of problems (1) and (9), respectively, we must
have max

ei∈E
{wi H(ci , d1

i)} ≤ max
ei∈E
{wi H(ci , d∗i)}, i.e., the optimal value of (1) can be taken as

a lower bound for the optimal value of (9). Clearly, the optimal values of (1) and (9) are
actually weights of two edges. We denote this lower bound as wt+1.

Second, if d2 is an optimal solution of problem (11) with the objective function value
being not greater than M , then from Lemma 4.1 this d2 is feasible to problem (9), and thus
max
ei∈E
{wi H(ci , d2

i)} must be an upper bound for the optimal value of problem (9). We denote

this upper bound as wt .
So the optimal value of problem (9) must be one of the cost values in the interval [wt+1, wt],

or for convenience, in the half open and half closed interval (wt , wt].
Third, in order to determine the minimum weight of problem (9) from the interval (wt , wt]

quickly, we may use the bisection method. Take a cost value, say wt ′ , which is in the quite
middle of the above interval. Then we ask: whether the minimum value of problem (9) is not
greater than wt ′? If yes, the search interval can be reduced to (wt , wt ′], otherwise to (wt ′ , wt].
And this question can be answered by computing problem (11) with the revision that if the
weight wτ of edge eτ is greater than wt ′ , then set dτ = cτ (i.e., let the corresponding lτ and

123

J Glob Optim (2009) 43:83–95 93

uτ in the second group of constraints in (11) be 0), and then checking if the minimum value
of the restricted problem (11) is not greater than M . Repeating the process several times until
the interval is reduced to include a single cost value, i.e., the right endpoint, which is the
optimal value of (9).

Let �a� be the smallest integer which is not less than a. The algorithm can be formally
described as follows.

Algorithm 5

Step 1 Let w0 = −1, rearrange the weights w0, w1, . . . , wm in an increasing order. Then we
express their different values as: −1 = w j1 < w j2 < · · · < w jk .

Step 2 Call Algorithm 3 to solve problem (1). If the algorithm finds problem (1) infeasible,
then output that the problem (9) is infeasible, stop. Otherwise, let the optimal solution
of (1) be d1 and find the index t such that max

ei∈E
{wi H(ci , d1

i)} = w jt+1 .

Step 3 Call Algorithm 4 to solve problem (11). If the algorithm finds that the optimal value
of problem (11) is greater than M , then output that problem (9) is infeasible, stop.
Otherwise, let the optimal solution of (11) be d2 and find the index t such that
max
ei∈E
{wi H(ci , d2

i)} = w jt .

Step 4 If t − t = 1, then output that d2 is an optimal solution of problem (9) with the
minimum cost w jt , stop. Otherwise, we have t − t > 1, and go to Step 5.

Step 5 Let t ′ = � t+t
2 �. Solve problem (11) with the restriction that

li = ui = 0, if wi > w jt ′ , (13)

If the restricted problem (11) is infeasible, set t ← t ′ and return to Step 4. Other-
wise, let the optimal solution of problem (11) be d2 so that the minimum value is
max
ei∈E
{wi H(ci , d2

i)}, then go to Step 6.

Step 6 If
∑

ei∈E wi H(ci , d2
i) ≤ M , then set t ← t ′. Otherwise, set t ← t ′. Return to Step 4.

Theorem 4.1 Algorithm 5 solves problem (9) with a time complexity O(n4 log m).

Proof If the algorithm stops at Steps 2 or 3, by Lemma 4.1, problem (9) is infeasible.
We next consider the case that problem (9) is feasible. We designate computations start-

ing from Step 4 until switching back to the next Step 4 as one iteration, and prove that the
algorithm can obtain the optimal solution of problem (9) by at most �log m� iterations. By
the introduction before proposing the algorithm, we know that the optimal value of problem
(9) is one of the t − t distinct cost values in the initial interval (w jt , w jt], where t and t are
defined in Steps 2 and 3, i.e., before entering the first iteration. In the following we show that
this conclusion is true for w jt and w jt obtained in any iteration. To prove this fact we should
consider the following three cases, as in each of the three cases the search interval (w jt , w jt]
is reduced.

Case 1 The algorithm finds in Step 5 that problem (11) with the restriction (13) is infeasi-
ble. We show that in this case for every feasible solution d of (11), max

ei∈E
{wi H(ci , di)} > w jt ′ .

In fact, if there exists a feasible solution d satisfying max
ei∈E
{wi H(ci , di)} ≤ w jt ′ , that is, for

each ei ∈ E , wi H(ci , di) ≤ w jt ′ , which implies that if wi > w j t ′ , then di = ci . Thus d is
a feasible solution of the restricted problem (11), a contradiction. Hence for every feasible
solution d of (11), max

ei∈E
{wi H(ci , di)} > w jt ′ . It means that the optimal value of problem

(9) is greater than w jt ′ , and hence must be in the interval (w jt ′ , w jt]. In this case by Step 5,

123

94 J Glob Optim (2009) 43:83–95

we let the next t equal t ′, which guarantees that the optimal value of (9) is in the next search
interval (w jt , w jt].

Case 2 The restricted problem (11) has an optimal solution d2 and max
ei∈E
{wi H(ci , d2

i)} >
M . This means that for any d satisfying the constraints of problem (11), if it also meets con-
dition (13), then we must have

∑m
i=1 wi H(ci , di) > M . As condition (13) is equivalent to

that max
ei∈E
{wi H(ci , di)} ≤ w jt ′ , the above conclusion implies that for every feasible solution

d to problem (9), we must have max
ei∈E
{wi H(ci , di)} > w jt ′ . Therefore, the optimal value of

(9) must be in the interval (w jt ′ , w jt]. So, in the next interval (w jt , w jt], we should let t = t ′,
that is what we did in Step 6 in this case.

Case 3 The restricted problem (11) has an optimal solution d2 and
∑m

i=1 wi H(ci , d2
i) ≤

M . This means that d2 satisfies all constraints of problem (9), and max
ei∈E
{wi H(ci , d2

i)} ≤ w jt ′ .

So, the optimal value of (9) must be in the interval (w jt , w jt ′], i.e., in the next interval
(w jt , w jt], t = t ′, see Step 6.

Combining the above three cases, we conclude that in each iteration the optimal value of
the problem (9) is one of the t − t distinct cost values in the interval (w jt , w jt].

As we know, the bisection method guarantees that after at most �log m� iterations, the
search interval (w jt , w jt] must satisfy t − t = 1, i.e., there is only one cost value in the
interval (w jt , w jt], which is just w jt . The corresponding solution is d2 which is feasible. So,
d2 is an optimal solution of problem (9), and the optimal value is w jt . So, the validity of the
algorithm is proved.

Finally, we study the time complexity of Algorithm 5. It is clear that Step 1 takes
O(m log m) time; from Sect. 3 we know that Step 2 takes O(n4) time; from [3] we know
Step 3 takes O(n4) and Steps 4–6 take O(n4) time. As the algorithm iterates for at most
�log m� times, it runs in O((m + n4) · log m) = O(n4 · log m) time in the worst-case, and
hence is a strongly polynomial time algorithm. ��

Now let us consider the problem (10). By comparing problems (11) and (10), we see that
they have the same objective function and the first two groups of constraints, but problem (10)
has one more constraint: max

ei∈E
{wi H(ci , di)} ≤ M . This constraint means di = ci if wi > M .

It is very simple to realize this purpose by redefining the vi in formula (7) as follows:

vi =
{

wi , if ei ∈ E(p), ci + ui ≥ p and wi ≤ M,

W + 1, otherwise,
(14)

Then by a similar argument as in [3], Algorithm 4 can be applied to solve the above
problem (10).

5 Concluding remarks

In this paper we studied the inverse min–max spanning tree problem under the weighted
Hamming distance. For bottleneck-type objective functions, we presented strongly polyno-
mial algorithm to solve it. Furthermore, for two mixed type problems which include both
sum type and bottleneck type measurements, we also give strongly polynomial algorithms.

As a future research topic, it will be meaningful to consider other inverse combinational
optimization problems under Hamming distance. Studying computational complexity results
and proposing optimal/approximation algorithms are promising.

123

J Glob Optim (2009) 43:83–95 95

References

1. Camerini, P.M.: The min–max spanning tree problem and some extensions. Inform. Process. Lett. 7, 10–
14 (1978)

2. Yang, X.G., Zhang, J.Z.: Some inverse min–max network problems under weighted l1 and l∞ norms
with bound constraints on changes. J. Comb. Optim. 13, 123–135 (2007)

3. Liu, L.C., Yao, E.Y.: Inverse min–max spanning tree problem under the weighted sum-type Hamming
distance. In: Theor Comput Sci (2007). doi: 10.1016/j.tcs.2007.12.006

4. Heuberger, C.: Inverse Optimization: A survey on problems, methods, and results. J. Comb.
Optim. 8, 329–361 (2004)

5. He, Y., Zhang, B., Yao, E.: Wighted inverse minimum spanning tree problems under Hamming distance.
J. Comb. Optim. 9, 91–100 (2005)

6. He, Y., Zhang, B., Zhang, J.: Constrained inverse minimum spanning tree problems under the bottle-
neck-type Hamming distance. J. Glob. Optim. 34(3), 467–474 (2006)

7. Duin, C.W., Volgenant, A.: Some inverse optimization problems under the Hamming distance. Eur. J.
Oper. Res. 170, 887–899 (2006)

8. Zhang, B., Zhang, J., He, Y.: The center location improvement problem under the Hamming distance.
J. Comb. Optim. 9, 187–198 (2005)

9. Yang, X.G., Zhang, J.Z.: Some new results on inverse sorting problems. In: Lecture Notes in Computer
Science, vol. 3595, pp. 985–992 (2005)

10. Liu, L.C., Zhang, J.Z.: Inverse maximum flow problems under the weighted Hamming distance. J. Comb.
Optim. 12, 395–408 (2006)

11. Liu, L.C., Yao, E.Y.: Weighted inverse minimum cut problem under the bottleneck-type Hamming dis-
tance. Asia-Pac. J. Oper. Res. 24(5), 1–12 (2007)

12. Guan, X., Zhang, J.: Inverse Bottleneck Optimization Problems under Weighted Hamming Distance. In:
Lecture Notes in Computer Science, vol. 4041, pp. 220–230 (2006)

13. Schrijver, A.: Combinatorial Optimization, Polyhedra and Efficiency. Springer-Verlag, Berlin (2003)

123

http://dx.doi.org/10.1016/j.tcs.2007.12.006

	Constrained inverse min--max spanning tree problems under the weighted Hamming distance
	Abstract
	1 Introduction
	2 Preliminary results
	3 Problem under the weighted bottleneck-type Hamming distance
	4 Two mixed type problems
	5 Concluding remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

